Akbar Golchin
Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran.
[ 1 ] - On Condition (G-PWP)
Laan in (Ph.D Thesis, Tartu. 1999) introduced the principal weak form of Condition $(P)$ as Condition $(PWP)$ and gave some characterization of monoids by this condition of their acts. In this paper first we introduce Condition (G-PWP), a generalization of Condition $(PWP)$ of acts over monoids and then will give a characterization of monoids when all right acts satisfy this condition. We also ...
[ 2 ] - On the property $U$-($G$-$PWP$) of acts
In this paper first of all we introduce Property $U$-($G$-$PWP$) of acts, which is an extension of Condition $(G$-$PWP)$ and give some general properties. Then we give a characterization of monoids when this property of acts implies some others. Also we show that the strong (faithfulness, $P$-cyclicity) and ($P$-)regularity of acts imply the property $U$-($G$-$PWP$). Finally, we give a necessar...
[ 3 ] - On $GPW$-Flat Acts
In this article, we present $GPW$-flatness property of acts over monoids, which is a generalization of principal weak flatness. We say that a right $S$-act $A_{S}$ is $GPW$-flat if for every $s in S$, there exists a natural number $n = n_ {(s, A_{S})} in mathbb{N}$ such that the functor $A_{S} otimes {}_{S}- $ preserves the embedding of the principal left ideal ${}_{S}(Ss^n)$ into ${}_{S}S$. We...
Co-Authors