Mehdi Rahimi

Amirkabir University of technology

[ 1 ] - Entropy operator for continuous dynamical systems of finite topological entropy

In this paper we introduce the concept of entropy operator for continuous systems of finite topological entropy. It is shown that it generates the Kolmogorov entropy as a special case. If $phi$ is invertible then the entropy operator is bounded with the topological entropy of $phi$ as its norm.

[ 2 ] - ON LOCAL HUDETZ g-ENTROPY

In this paper, a local approach to the concept of Hudetz $g$-entropy is presented. The introduced concept is stated in terms of Hudetz $g$-entropy. This representation is based on the concept of $g$-ergodic decomposition which is a result of the Choquet's representation Theorem for compact convex metrizable subsets of locally convex spaces.

[ 3 ] - Dynamical distance as a semi-metric on nuclear conguration space

In this paper, we introduce the concept of dynamical distance on a nuclear conguration space. We partition the nuclear conguration space into disjoint classes. This classification coincides with the classical partitioning of molecular systems via the concept of conjugacy of dynamical systems. It gives a quantitative criterion to distinguish dierent molecular structures.

[ 4 ] - Topological number for locally convex topological spaces with continuous semi-norms

In this paper we introduce the concept of topological number for locally convex topological spaces and prove some of its properties. It gives some criterions to study locally convex topological spaces in a discrete approach.

[ 6 ] - نظریۀ ارگودیک: دستگاه های دینامیکی از دیدگاه آنالیز تابعی

دستگاه های دینامیکی یکی از شاخه های مهم و کاربردی ریاضیات است که هم ریشه در علوم دیگر مانند فیزیک دارد و هم کاربردهای فراوانی در این علوم. گر چه نظریۀ دستگاه های دینامیکی خاستگاه هندسی داشته است، در مسیر تحول خود از ابزار های آنالیز تابعی بهره گرفته است و آن چنان با این شاخه از ریاضیات در هم آمیخته که به سختی می توان آنها را از یکدیگر جدا دانست. نظریۀ ارگودیک بخشی از دستگاه های دینامیکی است که ...