H. Ghahramani

University of Kurdistan

[ 1 ] - Jordan derivation on trivial extension

Let A be a unital R-algebra and M be a unital A-bimodule. It is shown that every Jordan derivation of the trivial extension of A by M, under some conditions, is the sum of a derivation and an antiderivation.

[ 2 ] - 2n-Weak module amenability of semigroup algebras

‎Let $S$ be an inverse semigroup with the set of idempotents $E$‎. We prove that the semigroup algebra $ell^{1}(S)$ is always‎ ‎$2n$-weakly module amenable as an $ell^{1}(E)$-module‎, ‎for any‎ ‎$nin mathbb{N}$‎, ‎where $E$ acts on $S$ trivially from the left‎ ‎and by multiplication from the right‎. ‎Our proof is based on a common fixed point property for semigroups‎.  

Co-Authors