V. Ene

Faculty of Mathematics and Computer Science‎, ‎Ovidius University‎, ‎Bd. Mamaia 124‎, ‎900527 Constanta‎, ‎Romania‎, ‎and‎ Simion Stoilow Institute of Mathematics of the Romanian Academy‎, ‎Research group of the project ID-PCE-2011-1023‎, ‎P.O.Box 1-764‎, ‎Bucharest 014700‎, ‎Romania

[ 1 ] - Binomial edge ideals and rational normal scrolls

‎Let $X=left(‎ ‎begin{array}{llll}‎ ‎ x_1 & ldots & x_{n-1}& x_n\‎ ‎ x_2& ldots & x_n & x_{n+1}‎ ‎end{array}right)$ be the Hankel matrix of size $2times n$ and let $G$ be a closed graph on the vertex set $[n].$ We study the binomial ideal $I_Gsubset K[x_1,ldots,x_{n+1}]$ which is generated by all the $2$-minors of $X$ which correspond to the edges of $G.$ We show that $I_G$ is Cohen-Macaula...

Co-Authors