A. R. Janfada‎

Department of‎ ‎Science‎, ‎University of Birjand‎, ‎P.O‎. ‎Box 414‎, ‎Birjand 9717851367‎, ‎Birjand‎, ‎Iran

[ 1 ] - Characterization of Lie higher Derivations on $C^{*}$-algebras

Let $mathcal{A}$ be a $C^*$-algebra and $Z(mathcal{A})$ the‎ ‎center of $mathcal{A}$‎. ‎A sequence ${L_{n}}_{n=0}^{infty}$ of‎ ‎linear mappings on $mathcal{A}$ with $L_{0}=I$‎, ‎where $I$ is the‎ ‎identity mapping‎ ‎on $mathcal{A}$‎, ‎is called a Lie higher derivation if‎ ‎$L_{n}[x,y]=sum_{i+j=n} [L_{i}x,L_{j}y]$ for all $x,y in  ‎mathcal{A}$ and all $ngeqslant0$‎. ‎We show that‎ ‎${L_{n}}_{n...

[ 2 ] - Products Of EP Operators On Hilbert C*-Modules

In this paper, the special attention is given to the  product of two  modular operators, and when at least one of them is EP, some interesting results is made, so the equivalent conditions are presented  that imply  the product of operators is EP. Also, some conditions are provided, for which the reverse order law is hold. Furthermore, it is proved  that $P(RPQ)$ is idempotent, if $RPQ$†</...

Co-Authors