D. Hadwin

College of Engineering and Physical Sciences, University of New Hampshire, Durham, USA.

[ 1 ] - A note on lifting projections

Suppose $pi:mathcal{A}rightarrow mathcal{B}$ is a surjective unital $ast$-homomorphism between C*-algebras $mathcal{A}$ and $mathcal{B}$, and $0leq aleq1$ with $ain  mathcal{A}$. We give a sufficient condition that ensures there is a proection $pin mathcal{A}$ such that $pi left( pright) =pi left( aright) $. An easy consequence is a result of [L. G. Brown and G. k. Pedersen, C*-algebras of real...

[ 2 ] - Addendum to: "Infinite-dimensional versions of the primary, cyclic and Jordan decompositions", by M. Radjabalipour

In his paper mentioned in the title, which appears in the same issue of this journal, Mehdi Radjabalipour derives the cyclic decomposition of an algebraic linear transformation. A more general structure theory for linear transformations appears in Irving Kaplansky's lovely 1954 book on infinite abelian groups. We present a translation of Kaplansky's results for abelian groups into the terminolo...

Co-Authors

H. Fan 1