F. Panjeh Ali Beik
Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O. Box 518, Rafsanjan, Iran
[ 1 ] - On the modified iterative methods for $M$-matrix linear systems
This paper deals with scrutinizing the convergence properties of iterative methods to solve linear system of equations. Recently, several types of the preconditioners have been applied for ameliorating the rate of convergence of the Accelerated Overrelaxation (AOR) method. In this paper, we study the applicability of a general class of the preconditioned iterative methods under certain conditio...
[ 2 ] - Theoretical results on the global GMRES method for solving generalized Sylvester matrix equations
The global generalized minimum residual (Gl-GMRES) method is examined for solving the generalized Sylvester matrix equation [sumlimits_{i = 1}^q {A_i } XB_i = C.] Some new theoretical results are elaborated for the proposed method by employing the Schur complement. These results can be exploited to establish new convergence properties of the Gl-GMRES method for solving genera...
[ 3 ] - Comparison results on the preconditioned mixed-type splitting iterative method for M-matrix linear systems
Consider the linear system Ax=b where the coefficient matrix A is an M-matrix. In the present work, it is proved that the rate of convergence of the Gauss-Seidel method is faster than the mixed-type splitting and AOR (SOR) iterative methods for solving M-matrix linear systems. Furthermore, we improve the rate of convergence of the mixed-type splitting iterative method by applying a preconditio...
[ 4 ] - Residual norm steepest descent based iterative algorithms for Sylvester tensor equations
Consider the following consistent Sylvester tensor equation[mathscr{X}times_1 A +mathscr{X}times_2 B+mathscr{X}times_3 C=mathscr{D},]where the matrices $A,B, C$ and the tensor $mathscr{D}$ are given and $mathscr{X}$ is the unknown tensor. The current paper concerns with examining a simple and neat framework for accelerating the speed of convergence of the gradient-based iterative algorithm and ...
[ 5 ] - Generalized iterative methods for solving double saddle point problem
In this paper, we develop some stationary iterative schemes in block forms for solving double saddle point problem. To this end, we first generalize the Jacobi iterative method and study its convergence under certain condition. Moreover, using a relaxation parameter, the weighted version of the Jacobi method together with its convergence analysis are considered. Furthermore, we extend a method...
Co-Authors