N. Soltankhah

Department of Mathematics‎, ‎Alzahra University‎, ‎P.O. Box 19834, Tehran‎, ‎Iran.

[ 1 ] - Total perfect codes‎, ‎OO-irredundant and total subdivision in graphs

‎Let $G=(V(G),E(G))$ be a graph‎, ‎$gamma_t(G)$. Let $ooir(G)$ be the total domination and OO-irredundance number of $G$‎, ‎respectively‎. ‎A total dominating set $S$ of $G$ is called a $textit{total perfect code}$ if every vertex in $V(G)$ is adjacent to exactly one vertex of $S$‎. ‎In this paper‎, ‎we show that if $G$ has a total perfect code‎, ‎then $gamma_t(G)=ooir(G)$‎. ‎As a consequence, ...

[ 2 ] - On the possible volume of $mu$-$(v,k,t)$ trades

‎A $mu$-way $(v,k,t)$ $trade$ of volume $m$ consists of $mu$‎ ‎disjoint collections $T_1$‎, ‎$T_2‎, ‎dots T_{mu}$‎, ‎each of $m$‎ ‎blocks‎, ‎such that for every $t$-subset of $v$-set $V$ the number of‎ ‎blocks containing this t-subset is the same in each $T_i (1leq‎ ‎i leq mu)$‎. ‎In other words any pair of collections ${T_i,T_j}$‎, ‎$1leq i< j leq mu‎$ is a $(v,k,t)$ trade of volume $m$. In th...

[ 3 ] - On the Volume of µ-way G-trade

A  $ mu $-way  $ G $-trade ($ mu geq 2) $  consists of $ mu $ disjoint decompositions of some simple (underlying) graph $ H $ into copies of a graph $ G. $  The   number of copies of the  graph $ G $ in  each of the decompositions is the volume of the $ G $-trade and   denoted by $ s. $ In this paper, we determine all values  $ s $ for which there exists a $  mu $-way   $ K_{1,m} $-trade of  vo...

Co-Authors