W. He

School of Mathematics‎, ‎Nanjing Normal University‎, ‎Nanjing 210046‎, ‎China.

[ 1 ] - A remark on Remainders of homogeneous spaces in some compactifications

‎We prove that a remainder $Y$ of a non-locally compact‎ ‎rectifiable space $X$ is locally a $p$-space if and only if‎ ‎either $X$ is a Lindel"{o}f $p$-space or $X$ is $sigma$-compact‎, ‎which improves two results by Arhangel'skii‎. ‎We also show that if a non-locally compact‎ ‎rectifiable space $X$ that is locally paracompact has a remainder $Y$ which has locally a $G_{delta}$-diagonal‎, ‎then...

[ 2 ] - A note on the remainders of rectifiable spaces

In this paper‎, ‎we mainly investigate how the generalized metrizability properties of the remainders affect the metrizability of rectifiable spaces‎, ‎and how the character of the remainders affects the character‎ ‎and the size of a rectifiable space‎. ‎Some results in [A. V‎. ‎Arhangel'skii and J‎. ‎Van Mill‎, ‎On topological groups with a first-countable remainder‎, ‎Topology Proc. 42 (2013...

[ 3 ] - A note on semi-regular locales

Semi-regular locales are extensions of the classical semiregular spaces. We investigate the conditions such that semi-regularization is a functor. We also investigate the conditions such that semi-regularization is a reflection or coreflection.

[ 4 ] - Lattice of compactifications of a topological group

We show that the lattice of compactifications of a topological group $G$ is a complete lattice which is isomorphic to the lattice of all closed normal subgroups of the Bohr compactification $bG$ of $G$. The correspondence defines a contravariant functor from the category of topological groups to the category of complete lattices. Some properties of the compactification lattice of a topological ...

Co-Authors