J. Moori
School of Mathematical Sciences, North-West University (Mafi-keng), P Bag X2046, Mmabatho 2735, South Africa.
[ 1 ] - Clifford-Fischer theory applied to a group of the form $2_{-}^{1+6}{:}((3^{1+2}{:}8){:}2)$
In our paper [A. B. M. Basheer and J. Moori, On a group of the form $2^{10}{:}(U_{5}(2){:}2)$] we calculated the inertia factors, Fischer matrices and the ordinary character table of the split extension $ 2^{10}{:}(U_{5}(2){:}2)$ by means of Clifford-Fischer Theory. The second inertia factor group of $2^{10}{:}(U_{5}(2){:}2)$ is a group of the form $2_{-}^{1+6}{:}((3^{1+2}{...
[ 2 ] - On the non-split extension $2^{2n}{^{cdot}}Sp(2n,2)$
In this paper we give some general results on the non-splitextension group $overline{G}_{n} = 2^{2n}{^{cdot}}Sp(2n,2), ngeq2.$ We then focus on the group $overline{G}_{4} =2^{8}{^{cdot}}Sp(8,2).$ We construct $overline{G}_{4}$ as apermutation group acting on 512 points. The conjugacy classes aredetermined using the coset analysis technique. Then we determine theinertia factor groups and Fischer...
[ 3 ] - On the non-split extension group $2^{6}{^{cdot}}Sp(6,2)$
In this paper we first construct the non-split extension $overline{G}= 2^{6} {^{cdot}}Sp(6,2)$ as a permutation group acting on 128 points. We then determine the conjugacy classes using the coset analysis technique, inertia factor groups and Fischer matrices, which are required for the computations of the character table of $overline{G}$ by means of Clifford-Fischer Theory. There are two inerti...
[ 4 ] - On the Fischer-Clifford matrices of a maximal subgroup of the Lyons group Ly
The non-split extension group $overline{G} = 5^3{^.}L(3,5)$ is a subgroup of order 46500000 and of index 1113229656 in Ly. The group $overline{G}$ in turn has L(3,5) and $5^2{:}2.A_5$ as inertia factors. The group $5^2{:}2.A_5$ is of order 3 000 and is of index 124 in L(3,5). The aim of this paper is to compute the Fischer-Clifford matrices of $overline{G}$, which together with associated parti...
Co-Authors