S. M. Tabatabaie
Department of Mathematics, The University of Qom, 3716146611, Iran.
[ 1 ] - The associated measure on locally compact cocommutative KPC-hypergroups
We study harmonic analysis on cocommutative KPC-hyper-groups, which is a generalization of DJS-hypergroups, introduced by Kalyuzhnyi, Podkolzin and Chapovsky. We prove that there is a relationship between the associated measures $mu$ and $gamma mu$, where $mu$ is a Radon measure on KPC-hypergroup $Q$ and $gamma$ is a character on $Q$.
[ 2 ] - Translation invariant mappings on KPC-hypergroups
In this paper, we give an extension of the Wendel's theorem on KPC-hypergroups. We also show that every translation invariant mapping is corresponding with a unique positive measure on the KPC-hypergroup.
[ 3 ] - $L^p$-Conjecture on Hypergroups
In this paper, we study $L^p$-conjecture on locally compact hypergroups and by some technical proofs we give some sufficient and necessary conditions for a weighted Lebesgue space $L^p(K,w)$ to be a convolution Banach algebra, where $1<p<infty$, $K$ is a locally compact hypergroup and $w$ is a weight function on $K$. Among the other things, we also show that if $K$ is a locally compact hyper...
[ 4 ] - Arveson Spectrum On Locally Compact Hypergroups
In this paper we study the concept of Arveson spectrum on locally compact hypergroups and for an important class of compact countable hypergroups . In thiis paper we study the concept of Arveson spectrum on locally compact hypergroups and develop its basic properties for an important class of compact countable hypergroups .
[ 5 ] - The existence of Zak transform in locally compact hypergroups
Let K be a locally compact hypergroup. In this paper we initiate the concept of fundamental domain in locally compact hypergroups and then we introduce the Borel section mapping. In fact, a fundamental domain is a subset of a hypergroup K including a unique element from each cosets, and the Borel section mapping is a function which corresponds to any coset, the related unique element in the fun...
[ 6 ] - Spaceability on Morrey Spaces
In this paper, as a main result for Morrey spaces, we prove that the set $mathcal M_q^p(mathbb R^n)backslashbigcup_{q<rleq p}mathcal M_r^p(mathbb R^n)$ is spaceable in $mathcal M_q^p(mathbb R^n)$, where $0<q<p<infty$.}
Co-Authors