K. Ghanbari

Department of Applied Mathematics‎, ‎Sahand University of‎ ‎Technology‎, ‎P.O‎. ‎Box 51335-1996‎, ‎Tabriz‎, ‎Iran.

[ 1 ] - New classes of Lyapunov type inequalities of fractional $Delta$-difference Sturm-Liouville problems with applications

‎In this paper‎, ‎we consider a new study about fractional $Delta$-difference equations‎. ‎We consider two special classes of Sturm-Liouville problems equipped with fractional $Delta$-difference operators‎. ‎In couple of steps‎, ‎the Lyapunov type inequalities for both classes will be obtained‎. ‎As application‎, ‎some qualitative behaviour of mentioned fractional problems such as stability‎, ‎...

[ 2 ] - Matrix representation of a sixth order Sturm-Liouville problem and related inverse problem with finite spectrum

‎In this paper‎, ‎we find matrix representation of a class of sixth order Sturm-Liouville problem (SLP) with separated‎, ‎self-adjoint boundary conditions and we show that such SLP have finite spectrum‎. ‎Also for a given matrix eigenvalue problem $HX=lambda VX$‎, ‎where $H$ is a block tridiagonal matrix and $V$ is a block diagonal matrix‎, ‎we find a sixth order boundary value problem of Atkin...

[ 3 ] - Positive solutions for discrete fractional initial value problem

‎‎In this paper‎, ‎the existence and uniqueness of positive solutions for a class of nonlinear initial value problem for a finite fractional difference equation obtained by constructing the upper and lower control functions of nonlinear term without any monotone requirement‎ .‎The solutions of fractional difference equation are the size of tumor in model tumor growth described by the Gompertz f...

Co-Authors