M. R. Abdollahpour
Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran.
[ 1 ] - Multipliers of continuous $G$-frames in Hilbert spaces
In this paper we introduce continuous $g$-Bessel multipliers in Hilbert spaces and investigate some of their properties. We provide some conditions under which a continuous $g$-Bessel multiplier is a compact operator. Also, we show the continuous dependency of continuous $g$-Bessel multipliers on their parameters.
[ 2 ] - G-frames and Hilbert-Schmidt operators
In this paper we introduce and study Besselian $g$-frames. We show that the kernel of associated synthesis operator for a Besselian $g$-frame is finite dimensional. We also introduce $alpha$-dual of a $g$-frame and we get some results when we use the Hilbert-Schmidt norm for the members of a $g$-frame in a finite dimensional Hilbert space.
[ 3 ] - On the stability of linear differential equations of second order
The aim of this paper is to investigate the Hyers-Ulam stability of the linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$ $fin C[a,b]$ and $-infty
[ 4 ] - Controlled Continuous $G$-Frames and Their Multipliers in Hilbert Spaces
In this paper, we introduce $(mathcal{C},mathcal{C}')$-controlled continuous $g$-Bessel families and their multipliers in Hilbert spaces and investigate some of their properties. We show that under some conditions sum of two $(mathcal{C},mathcal{C}')$-controlled continuous $g$-frames is a $(mathcal{C},mathcal{C}')$-controlled continuous $g$-frame. Also, we investigate when a $(mathcal{C},mathca...
[ 5 ] - On Sum and Stability of Continuous $G$-Frames
In this paper, we give some conditions under which the finite sum of continuous $g$-frames is again a continuous $g$-frame. We give necessary and sufficient conditions for the continuous $g$-frames $Lambda=left{Lambda_w in Bleft(H,K_wright): win Omegaright}$ and $Gamma=left{Gamma_w in Bleft(H,K_wright): win Omegaright}$ and operators $U$ and $V$ on $H$ such that $Lambda U+Gamma V={Lambda_w U+Ga...
[ 6 ] - Multipliers of pg-Bessel sequences in Banach spaces
In this paper, we introduce $(p,q)g-$Bessel multipliers in Banach spaces and we show that under some conditions a $(p,q)g-$Bessel multiplier is invertible. Also, we show the continuous dependency of $(p,q)g-$Bessel multipliers on their parameters.
Co-Authors