Sh. Najafzadeh

Department of Mathematics‎, ‎Payame Noor University‎, ‎P.O‎. ‎Box 19395-3697 Tehran‎, ‎Iran.

[ 1 ] - The norm of pre-Schwarzian derivatives on bi-univalent functions of order $alpha$

‎In the present investigation‎, ‎we give the best estimates for the norm of the pre-Schwarzian derivative $ T_{f}(z)=dfrac{f^{''}(z)}{f^{'}(z)} $ for bi-starlike functions and a new subclass of bi-univalent functions of order $ alpha $‎, ‎where‎ ‎$Vert T_{f} Vert= sup_{|z|

[ 2 ] - Stability for certain subclasses of harmonic univalent functions

In this paper, the problem of stability for certain subclasses of harmonic univalent functions is investigated. Some lower bounds for the radius of stability of these subclasses are found.

[ 3 ] - Sufficient Conditions for a New Class of Polynomial Analytic Functions of Reciprocal Order alpha

In this paper, we consider a new class of analytic functions in the unit disk using polynomials of order alpha. We give some sufficient conditions for functions belonging to this class.

[ 4 ] - Some properties and results for certain subclasses of starlike and convex functions

In the present paper, we introduce and investigate some properties of two subclasses $ Lambda_{n}( lambda , beta ) $ and $ Lambda_{n}^{+}( lambda , beta ) $;  meromorphic and starlike  functions of order $ beta $. In particular, several inclusion relations, coefficient estimates, distortion theorems and covering theorems are proven here for each of these function classes.

[ 5 ] - On Integral Operator and Argument Estimation of a Novel Subclass of Harmonic Univalent Functions

Abstract. In this paper we define and verify a subclass of harmonic univalent functions involving the argument of complex-value functions of the form f = h + ¯g and investigate some properties of this subclass e.g. necessary and sufficient coefficient bounds, extreme points, distortion bounds and Hadamard product.Abstract. In this paper we define and verify a subclass of harmonic univalent func...