M. Eslamian
Department of Mathematics, University of Science and Technology of Mazandaran, P.O. Box 48518-78195, Behshahr, Iran.
[ 1 ] - Composition of resolvents and quasi-nonexpansive multivalued mappings in Hadamared spaces
The proximal point algorithm, which is a well-known tool for finding minima of convex functions, is generalized from the classical Hilbert space framework into a nonlinear setting, namely, geodesic metric spaces of nonpositive curvature. In this paper we propose an iterative algorithm for finding the common element of the minimizers of a finite family of convex functions a...
[ 2 ] - Geodesic metric spaces and generalized nonexpansive multivalued mappings
In this paper, we present some common fixed point theorems for two generalized nonexpansive multivalued mappings in CAT(0) spaces as well as in UCED Banach spaces. Moreover, we prove the existence of fixed points for generalized nonexpansive multivalued mappings in complete geodesic metric spaces with convex metric for which the asymptotic center of a bounded sequence in a bounded closed convex...
[ 3 ] - Strong convergence of variational inequality problem Over the set of common fixed points of a family of demi-contractive mappings
In this paper, by using the viscosity iterative method and the hybrid steepest-descent method, we present a new algorithm for solving the variational inequality problem. The sequence generated by this algorithm is strong convergence to a common element of the set of common zero points of a finite family of inverse strongly monotone operators and the set of common fixed points of a finite family...
Co-Authors