H. Hejazipour
Department of Mathematical Sciences, Shahrekord University, P.O. Box 115, Shahrekord, Iran.
[ 1 ] - When is the ring of real measurable functions a hereditary ring?
Let $M(X, mathcal{A}, mu)$ be the ring of real-valued measurable functions on a measure space $(X, mathcal{A}, mu)$. In this paper, we characterize the maximal ideals in the rings of real measurable functions and as a consequence, we determine when $M(X, mathcal{A}, mu)$ is a hereditary ring.
Co-Authors