M.M. Rezaii
Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran.
[ 1 ] - Stability of F-biharmonic maps
This paper studies some properties of F-biharmonic maps between Riemannian manifolds. By considering the first variation formula of the F-bienergy functional, F-biharmonicity of conformal maps are investigated. Moreover, the second variation formula for F-biharmonic maps is obtained. As an application, instability and nonexistence theorems for F-biharmonic maps are given.
[ 2 ] - Identification of Riemannian foliations on the tangent bundle via SODE structure
The geometry of a system of second order differential equations is the geometry of a semispray, which is a globally defined vector field on TM. The metrizability of a given semispray is of special importance. In this paper, the metric associated with the semispray S is applied in order to study some types of foliations on the tangent bundle which are compatible with SODE structure. Indeed, suff...
Co-Authors