H. Nashine

Department of Mathematics‎, ‎Texas A & M University‎, ‎Kingsville‎, ‎78363-8202‎, ‎Texas‎, ‎USA.

[ 1 ] - Existence and convergence results for monotone nonexpansive type mappings in‎ ‎partially ordered hyperbolic metric spaces

‎We present some existence and convergence results for a general class of nonexpansive mappings in partially ordered hyperbolic metric spaces‎. ‎We also give some examples to show the generality of the mappings considered herein.

[ 2 ] - Solutions of initial and boundary value problems via F-contraction mappings in metric-like space

We present sufficient conditions for the existence of solutions of second-order two-point boundary value and fractional order functional differential equation problems in a space where self distance is not necessarily zero. For this, first we introduce a Ciric type generalized F-contraction and F- Suzuki contraction in a metric-like space and give relevance to fixed point results. To illustrate...

[ 3 ] - Existence of common best proximity points of generalized $S$-proximal contractions

In this article, we introduce a new notion of proximal contraction, named as generalized S-proximal contraction and derive a common best proximity point theorem for proximally commuting non-self mappings, thereby yielding the common optimal approximate solution of some fixed point equations when there is no common solution. We furnish illustrative examples to highlight our results. We extend so...

[ 4 ] - Strong and $Delta$-convergence theorems for total asymptotically nonexpansive mappings in CAT(0)

In this work we use the Noor iteration process for total asymptotically nonexpansive mapping to establish the strong and $Delta$-convergence theorems in the framework of CAT(0) spaces. By doing this, some of the results existing in the current literature  generalize, unify and extend.

[ 5 ] - Fixed point theorems under weakly contractive conditions via auxiliary functions in ordered $G$-metric spaces

We present some fixed point results for a single mapping and a pair of compatible mappings via auxiliary functions which satisfy a generalized weakly contractive condition in partially ordered complete $G$-metric spaces. Some examples are furnished to illustrate the useability of our main results. At the end, an application is presented to the study of exi...