G.W. Chang

Department of Mathematics Education‎, ‎Incheon National University‎, ‎Incheon 22012‎, ‎Republic of Korea.

[ 1 ] - The $w$-FF property in trivial extensions

‎Let $D$ be an integral domain with quotient field $K$‎, ‎$E$ be a $K$-vector space‎, ‎$R = D propto E$ be the trivial extension of $D$ by $E$‎, ‎and $w$ be the so-called $w$-operation‎. ‎In this paper‎, ‎we show that‎ ‎$R$ is a $w$-FF ring if and only if $D$ is a $w$-FF domain; and‎ ‎in this case‎, ‎each $w$-flat $w$-ideal of $R$ is $w$-invertible.

Co-Authors

H. Kim 1