Y. Mao
Institute of Quantum Information Science, Shanxi Datong University Datong 037009, P.R. China.
[ 1 ] - On $Phi$-$tau$-quasinormal subgroups of finite groups
Let $tau$ be a subgroup functor and $H$ a $p$-subgroup of a finite group $G$. Let $bar{G}=G/H_{G}$ and $bar{H}=H/H_{G}$. We say that $H$ is $Phi$-$tau$-quasinormal in $G$ if for some $S$-quasinormal subgroup $bar{T}$ of $bar{G}$ and some $tau$-subgroup $bar{S}$ of $bar{G}$ contained in $bar{H}$, $bar{H}bar{T}$ is $S$-quasinormal in $bar{G}$ and $bar{H}capbar{T}leq bar{S}Phi(bar{H})$. I...
[ 2 ] - On weakly $mathfrak{F}_{s}$-quasinormal subgroups of finite groups
Let $mathfrak{F}$ be a formation and $G$ a finite group. A subgroup $H$ of $G$ is said to be weakly $mathfrak{F}_{s}$-quasinormal in $G$ if $G$ has an $S$-quasinormal subgroup $T$ such that $HT$ is $S$-quasinormal in $G$ and $(Hcap T)H_{G}/H_{G}leq Z_{mathfrak{F}}(G/H_{G})$, where $Z_{mathfrak{F}}(G/H_{G})$ denotes the $mathfrak{F}$-hypercenter of $G/H_{G}$. In this paper, we study the structur...