مصطفی حسنلو

استادیار مرکز آموزش عالی شهید باکری میاندوآب، دانشگاه ارومیه، ارومیه، ایران

[ 1 ] - ارزیابی تناسب اراضی منطقه هوراند با استفاده از روش نقطه‌ ایده آل برای جو آبی

یکی از بهترین سیاست‌های کشاورزی، ارزیابی تناسب زمین‌های قابل کشت و پتانسیل تولید آن­ها به منظور پشتیبانی و حمایت از کاربری‌های فعلی و آتی است؛ بنابراین مدل­سازی پتانسیل تولید از اهمیت زیادی برخوردار می­باشد. در این تحقیق از نقطه ایده­آل برای مدل­سازی تولید جو آبی در بخشی از اراضی شهرستان هوراند استفاده شد. برای این منظور تعدادی از ویژگی­های خاک و زمین­نما با بررسی منابع انتخاب و میزان وزن آن­ها...

[ 2 ] - Estimates of Norm and Essential norm of Differences of Differentiation Composition Operators on Weighted Bloch Spaces

Norm and essential norm of differences of differentiation composition operators between Bloch spaces have been estimated in this paper. As a result, we find characterizations for boundedness and compactness of these operators.

[ 3 ] - Weighted composition operators on weighted Bergman spaces and weighted Bloch spaces

In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.

[ 4 ] - Essential norm estimates of generalized weighted composition operators into weighted type spaces

Weighted composition operators appear in the study of dynamical systems and also in characterizing isometries of some classes of Banach spaces. One of the most important generalizations of weighted composition operators, are generalized weighted composition operators which in special cases of their inducing functions give different types of well-known operators like: weighted composition operat...

[ 5 ] - Composition operators between growth spaces‎ ‎on circular and strictly convex domains in complex Banach spaces‎

‎Let $\Omega_X$ be a bounded‎, ‎circular and strictly convex domain in a complex Banach space $X$‎, ‎and $\mathcal{H}(\Omega_X)$ be the space of all holomorphic functions from $\Omega_X$ to $\mathbb{C}$‎. ‎The growth space $\mathcal{A}^\nu(\Omega_X)$ consists of all $f\in\mathcal{H}(\Omega_X)$‎ ‎such that $$|f(x)|\leqslant C \nu(r_{\Omega_X}(x)),\quad x\in \Omega_X,$$‎ ‎for some constant $C>0$‎...