فریدون رادمنش

دانشیار گروه هیدرولوژی و مهندسی منابع آب، دانشگاه شهید چمران اهواز

[ 1 ] - پیش‌بینی گروهی جریان با استفاده از مدل هیبرید بارش رواناب (مطالعه موردی حوضه آبریز رود زرد)

یکی از مهمترین اطلاعات در بهره­برداری مطلوب از منابع آب، اطلاعات مربوط به پیش­بینی آبدهی در آینده است. دراستفاده از اطلاعات پیش­بینی جریان در نظر گرفتن عدم قطعیت­های موجود از اهمیت به سزایی برخوردار است. پیش­بینی­ گروهی جریان  یکی از روشهایی است که عدم قطعیت پیش­بینی به دلیل عدم اطلاعات دقیق پدیده­های هواشناسی را پوشش می­دهد. هدف از این تحقیق تولید و ارزیابی پیش­بینی گروهی جریان ماهانه برای حوض...

[ 2 ] - بهبود عملکرد مدل شبکۀ عصبی مصنوعی با کمک تبدیل موجک و روش PCA برای مدل‌سازی و پیش‌بینی اکسیژن مورد نیاز بیولوژیکی (BOD)

در دهه‏های اخیر، توسعۀ مدل‏های هوش مصنوعی برای پیش‌بینی پدیده‏های هیدرولوژیکی کاربرد زیادی پیدا کرده است. در این مطالعه، توانایی مدل‏های شبکۀ عصبی مصنوعی به‌منظور مدل‏سازی و پیش‏بینی اکسیژن مورد نیاز بیولوژیکی (BOD) در رودخانۀ کارون واقع در غرب کشور ایران ارزیابی شد. به‌منظور بهبود نتایج شبیه‏سازی از آنالیز موجک به‌عنوان مدل ترکیبی استفاده شد. سری زمانی ماهانۀ شاخص BOD رودخانۀ کارون در ایستگاه ...

[ 3 ] - استفاده ترکیبی از تبدیل موجک و مدل‌های هوشمند در شبیه‌سازی جریان رودخانه (مطالعه موردی: رودخانه‌های کاکارضا و سراب صیدعلی)

چکیده بی­شک اولین قدم برای مدیریت منابع آب پیش‌بینی و برآورد جریان رودخانه‌ها است. در این مطالعه به منظور پیش‌بینی سری زمانی جریان روزانه و ماهانه ایستگاه‌های کاکارضا و سراب صیدعلی، مدل‌های شبکه عصبی مصنوعی و سیستم استتتاج فازی عصبی تطبیقی استفاده شده است. به منظور بهبود نتایج شبیه‌سازی از آنالیز موجک به عنوان مدل ترکیبی استفاده شد. برای این هدف، سری زمانی جریان و بارش به...