A.R. Khalili Asboei

Department of Mathematics, Farhangian University

[ 1 ] - Characterization of $mathrm{PSL}(5,q)$ by its Order and One Conjugacy Class Size

Let $p=(q^4+q^3+q^2+q+1)/(5,q-1)$ be a prime number, where $q$ is a prime power. In this paper, we will show $Gcong mathrm{PSL}(5,q)$ if and only if $|G|=|mathrm{PSL}(5,q)|$, and $G$ has a conjugacy class size $frac{| mathrm{PSL}(5,q)|}{p}$. Further, the validity of a conjecture of J. G. Thompson is generalized to the groups under consideration by a new way.

[ 2 ] - Recognition of $L_{2}(q)$ by the Main Supergraph

Let $G$ be a finite group. The main supergraph $mathcal{S}(G)$ is a graph with vertex set $G$ in which two vertices $x$ and $y$ are adjacent if and only if $o(x) mid o(y)$ or $o(y)mid o(x)$. In this paper, we will show that $Gcong L_{2}(q)$ if and only if $mathcal{S}(G)cong mathcal{S} (L_{2}(q))$, where $q$ is a prime power. This work implies that Thompsonchr('39')s problem holds for the simpl...

Co-Authors