A. Zeraatkar Moghaddam
Department of Chemistry, Faculty of Sciences, University of Birjand, Birjand, Iran
[ 1 ] - A Novel and an Efficient 3-D High Nitrogen Doped Graphene Oxide Adsorbent for the Removal of Congo Red from Aqueous Solutions
The current study both synthesizes and uses four compounds of graphene oxide (GO), nitrogen doped graphene oxide (ND-GO), high nitrogen doped graphene oxide (HND-GO), and three dimensional high nitrogen doped graphene oxide (3D-HND-GO) in order to remove a model anionic dye, Congo red (CR) from wastewaters. It also compares their carbon nano-structure, with regard to removal efficiency and find...
[ 2 ] - A Novel and an Efficient 3-D High Nitrogen Doped Graphene Oxide Adsorbent for the Removal of Congo Red from Aqueous Solutions
The current study both synthesizes and uses four compounds of graphene oxide (GO), nitrogen doped graphene oxide (ND-GO), high nitrogen doped graphene oxide (HND-GO), and three dimensional high nitrogen doped graphene oxide (3D-HND-GO) in order to remove a model anionic dye, Congo red (CR) from wastewaters. It also compares their carbon nano-structure, with regard to removal efficiency and find...
[ 3 ] - Response surface method Optimization of the Dyes Degradation using Zero-Valent Iron based Bimetallic Nanoparticle on the Bentonite Clay Surface
Immobilizing of zero-valent iron in mono- and bi-metallic systems on the bentonite clay surface as new nanocatalyst were synthesized and used to degrade model acidic dyes from aqueous media. The Fourier-transform infrared spectroscopy, scanning electron microscopy-energy dispersive X-ray spectroscopy, transmission electron microscopy, X-ray diffraction, and Brunauer-Emmett-Teller analysis were ...
[ 4 ] - Response surface method Optimization of the Dyes Degradation using Zero-Valent Iron based Bimetallic Nanoparticle on the Bentonite Clay Surface
Immobilizing of zero-valent iron in mono- and bi-metallic systems on the bentonite clay surface as new nanocatalyst were synthesized and used to degrade model acidic dyes from aqueous media. The Fourier-transform infrared spectroscopy, scanning electron microscopy-energy dispersive X-ray spectroscopy, transmission electron microscopy, X-ray diffraction, and Brunauer-Emmett-Teller analysis were ...
Co-Authors