A. Azaron
Engineering, Buali Sina University
[ 1 ] - Multi-Objective Lead Time Control in Multistage Assembly Systems (TECHNICAL NOTE)
In this paper we develop a multi-objective model to optimally control the lead time of a multistage assembly system. The multistage assembly system is modeled as an open queueing network, whose service stations represent manufacturing or assembly operations. The arrival processes of the individual parts of the product, which should be assembled to each other in assembly stations, are assumed to...
[ 2 ] - Optimal Control of Service Rate in a Service Center with Lapse (Research Note)
The purpose of this paper is to analyze the effect of a particular control doctrine applied to the service mechanism of a queuing process with lapse. It is assumed that the service discipline is FCFS (first come, first served), arrival process is Poisson, service time distribution is exponential, service process is one phase and the capacity is infinite. It is also assumed that the customer may...
[ 3 ] - Bicriteria Resource Allocation Problem in Pert Networks
We develop a bicriteria model for the resource allocation problem in PERT networks, in which the total direct costs of the project as the first objective, and the mean of project completion time as the second objective are minimized. The activity durations are assumed to be independent random variables with either exponential or Erlang distributions, in which the mean of each activity duration ...
[ 4 ] - Longest Path in Networks of Queues in the Steady-State
Due to the importance of longest path analysis in networks of queues, we develop an analytical method for computing the steady-state distribution function of longest path in acyclic networks of queues. We assume the network consists of a number of queuing systems and each one has either one or infinite servers. The distribution function of service time is assumed to be exponential or Erlang. Fu...
[ 5 ] - Dynamic Multi Period Production Planning Problem with Semi Markovian Variable Cost (TECHNICAL NOTE)
This paper develops a method for solving the single product multi-period production-planning problem, in which the production and the inventory costs of each period arc concave and backlogging is not permitted. It is also assumed that the unit variable cost of the production evolves according to a continuous time Markov process. We prove that this production-planning problem can be Stated as a ...
Co-Authors