Faranak Farshadifar
Department of Mathematics, Farhangian University, Tehran, Iran
[ 1 ] - 2-absorbing $I$-prime and 2-absorbing $I$-second submodules
Let $R$ be a commutative ring and let $I$ be an ideal of $R$. In this paper, we will introduce the notions of 2-absorbing $I$-prime and 2-absorbing $I$-second submodules of an $R$-module $M$ as a generalization of 2-absorbing and strongly 2-absorbing second submodules of $M$ and explore some basic properties of these classes of modules.
[ 2 ] - The secondary radicals of submodules
Let $R$ be a commutative ring with identity and let $M$ be an $R$-module. In this paper, we will introduce the secondary radical of a submodule $N$ of $M$ as the sum of all secondary submodules of $M$ contained in $N$, denoted by $sec^*(N)$, and explore the related properties. We will show that this class of modules contains the family of second radicals properly and can be regarded as a dual o...
[ 3 ] - CLASSICAL 2-ABSORBING SECONDARY SUBMODULES
In this work, we introduce the concept of classical 2-absorbing secondary modules over a commutative ring as a generalization of secondary modules and investigate some basic properties of this class of modules. Let $R$ be a commutative ring with identity. We say that a non-zero submodule $N$ of an $R$-module $M$ is a emph{classical 2-absorbing secondary submodule} of $M$ ...
Co-Authors