E. Ehsaeyan
Department of Electrical Engineering, Sirjan University of Technology, Sirjan, Iran.
[ 1 ] - A New Shearlet Framework for Image Denoising
Traditional noise removal methods like Non-Local Means create spurious boundaries inside regular zones. Visushrink removes too many coefficients and yields recovered images that are overly smoothed. In Bayesshrink method, sharp features are preserved. However, PSNR (Peak Signal-to-Noise Ratio) is considerably low. BLS-GSM generates some discontinuous information during the course of denoising a...
[ 2 ] - An Improvement of Steerable Pyramid Denoising Method
The use of wavelets in denoising, seems to be an advantage in representing well the details. However, the edges are not so well preserved. Total variation technique has advantages over simple denoising techniques such as linear smoothing or median filtering, which reduce noise, but at the same time smooth away edges to a greater or lesser degree. In this paper, an efficient denoising method bas...
[ 3 ] - An Efficient Curvelet Framework for Denoising Images
Wiener filter suppresses noise efficiently. However, it makes the out image blurred. Curvelet preserves the edges of natural images perfectly, but, it produces visual distortion artifacts and fuzzy edges to the restored image, especially in homogeneous regions of images. In this paper, a new image denoising framework based on Curvelet transform and wiener filter is proposed, which can stop nois...
[ 4 ] - A Robust Image Denoising Technique in the Contourlet Transform Domain
The contourlet transform has the benefit of efficiently capturing the oriented geometrical structures of images. In this paper, by incorporating the ideas of Stein’s Unbiased Risk Estimator (SURE) approach in Nonsubsampled Contourlet Transform (NSCT) domain, a new image denoising technique is devised. We utilize the characteristics of NSCT coefficients in high and low subbands and apply SURE sh...
Co-Authors