E. Salajegheh
[ 1 ] - OPTIMAL SENSOR PLACEMENT FOR DAMAGE DETECTION BASED ON A NEW GEOMETRICAL VIEWPOINT
In this study, efficient methods for optimal sensor placement (OSP) based on a new geometrical viewpoint for damage detection in structures is presented. The purpose is to minimize the effects of noise on the damage detection process. In the geometrical viewpoint, a sensor location is equivalent to projecting the elliptical noise on to a face of response space which is corresponding to the sens...
[ 2 ] - Approximate Dynamic Analysis of Structures for Earthquake Loading Using FWT
Approximate dynamic analysis of structures is achieved by fast wavelet transform (FWT). The loads are considered as time history earthquake loads. To reduce the computational work, FWT is used by which the number of points in the earthquake record are reduced. For this purpose, the theory of wavelets together with filter banks are used. The low and high pass filters are used for the decompositi...
[ 3 ] - Continuous Discrete Variable Optimization of Structures Using Approximation Methods
Optimum design of structures is achieved while the design variables are continuous and discrete. To reduce the computational work involved in the optimization process, all the functions that are expensive to evaluate, are approximated. To approximate these functions, a semi quadratic function is employed. Only the diagonal terms of the Hessian matrix are used and these elements are estimated fr...
[ 4 ] - Efficient Optimum Design of Steructures With Reqency Response Consteraint Using High Quality Approximation
An efficient technique is presented for optimum design of structures with both natural frequency and complex frequency response constraints. The main ideals to reduce the number of dynamic analysis by introducing high quality approximation. Eigenvalues are approximated using the Rayleigh quotient. Eigenvectors are also approximated for the evaluation of eigenvalues and frequency responses. A tw...
[ 5 ] - A Two Level Approximation Technique for Structural Optimization
This work presents a method for optimum design of structures, where the design variables can he considered as Continuous or discrete. The variables are chosen as sizing variables as well as coordinates of joints. The main idea is to reduce the number of structural analyses and the overal cost of optimization. In each design cycle, first the structural response quantities such as forces, displac...
Co-Authors