Ali Hassanzadeh

Department of Mathematics, Sahand University of Technology, Tabriz, Iran.

[ 1 ] - A cone theoretic Krein-Milman theorem in semitopological cones

In this paper, a Krein-Milman  type theorem in $T_0$ semitopological cone is proved,  in general. In fact, it is shown that in any locally convex $T_0$ semitopological cone, every convex compact saturated subset is the compact saturated convex hull of its extreme points, which improves the results of Larrecq.

[ 2 ] - Bishop-Phelps type Theorem for Normed Cones

In this paper the notion of  support points of convex sets  in  normed cones is introduced and it is shown that in a  continuous normed cone, under the appropriate conditions, the set of support points of a  bounded Scott-closed convex set is nonempty. We also present a Bishop-Phelps type Theorem for normed cones.

Co-Authors