R. Beyranvand

Lorestan University

[ 1 ] - On zero-divisor graphs of quotient rings and complemented zero-divisor graphs

For an arbitrary ring $R$, the zero-divisor graph of $R$, denoted by $Gamma (R)$, is an undirected simple graph that its vertices are all nonzero zero-divisors of $R$ in which any two vertices $x$ and $y$ are adjacent if and only if either $xy=0$ or $yx=0$. It is well-known that for any commutative ring $R$, $Gamma (R) cong Gamma (T(R))$ where $T(R)$ is the (total) quotient ring of $R$. In this...

[ 2 ] - Small submodules with respect to an arbitrary submodule

Let $R$ be an arbitrary ring and $T$ be a submodule of an $R$-module $M$. A submodule $N$ of $M$ is called $T$-small in $M$ provided for each submodule $X$ of $M$, $Tsubseteq X+N$ implies that $Tsubseteq X$. We study this mentioned notion which is a generalization of the small submodules and we obtain some related results.

Co-Authors