Ghasem Ahmadi
Payame Noor university
[ 1 ] - Solving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks
Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints. In this paper, to solve this problem, we combine a discretization method and a neural network method. By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem. Then, we use...
[ 2 ] - A Higher Order Online Lyapunov-Based Emotional Learning for Rough-Neural Identifiers
o enhance the performances of rough-neural networks (R-NNs) in the system identification, on the base of emotional learning, a new stable learning algorithm is developed for them. This algorithm facilitates the error convergence by increasing the memory depth of R-NNs. To this end, an emotional signal as a linear combination of identification error and its differences is used to achie...
[ 3 ] - Stable Rough Extreme Learning Machines for the Identification of Uncertain Continuous-Time Nonlinear Systems
Rough extreme learning machines (RELMs) are rough-neural networks with one hidden layer where the parameters between the inputs and hidden neurons are arbitrarily chosen and never updated. In this paper, we propose RELMs with a stable online learning algorithm for the identification of continuous-time nonlinear systems in the presence of noises and uncertainties, and we prove the global ...
Co-Authors