Nasrin Dehgardi
Sirjan University of Technology, Sirjan 78137, Iran
[ 1 ] - Mixed Roman domination and 2-independence in trees
Let $G=(V, E)$ be a simple graph with vertex set $V$ and edge set $E$. A {em mixed Roman dominating function} (MRDF) of $G$ is a function $f:Vcup Erightarrow {0,1,2}$ satisfying the condition that every element $xin Vcup E$ for which $f(x)=0$ is adjacentor incident to at least one element $yin Vcup E$ for which $f(y)=2$. The weight of anMRDF $f$ is $sum _{xin Vcup E} f(x)$. The mi...
[ 2 ] - Reformulated F-index of graph operations
The first general Zagreb index is defined as $M_1^lambda(G)=sum_{vin V(G)}d_{G}(v)^lambda$. The case $lambda=3$, is called F-index. Similarly, reformulated first general Zagreb index is defined in terms of edge-drees as $EM_1^lambda(G)=sum_{ein E(G)}d_{G}(e)^lambda$ and the reformulated F-index is $RF(G)=sum_{ein E(G)}d_{G}(e)^3$. In this paper, we compute the reformulated F-index for some grap...
[ 3 ] - Signed total Roman k-domination in directed graphs
Let $D$ be a finite and simple digraph with vertex set $V(D)$.A signed total Roman $k$-dominating function (STR$k$DF) on$D$ is a function $f:V(D)rightarrow{-1, 1, 2}$ satisfying the conditionsthat (i) $sum_{xin N^{-}(v)}f(x)ge k$ for each$vin V(D)$, where $N^{-}(v)$ consists of all vertices of $D$ fromwhich arcs go into $v$, and (ii) every vertex $u$ for which$f(u)=-1$ has a...
[ 4 ] - The minus k-domination numbers in graphs
For any integer , a minus k-dominating function is afunction f : V (G) {-1,0, 1} satisfying w) for every vertex v, where N(v) ={u V(G) | uv E(G)} and N[v] =N(v)cup {v}. The minimum of the values of v), taken over all minusk-dominating functions f, is called the minus k-dominationnumber and is denoted by $gamma_k^-(G)$ . In this paper, we introduce the study of minu...
[ 5 ] - Nonnegative signed total Roman domination in graphs
Let $G$ be a finite and simple graph with vertex set $V(G)$. A nonnegative signed total Roman dominating function (NNSTRDF) on a graph $G$ is a function $f:V(G)rightarrow{-1, 1, 2}$ satisfying the conditionsthat (i) $sum_{xin N(v)}f(x)ge 0$ for each $vin V(G)$, where $N(v)$ is the open neighborhood of $v$, and (ii) every vertex $u$ for which $f(u...
[ 6 ] - Outer independent Roman domination number of trees
A Roman dominating function (RDF) on a graph G=(V,E) is a function f : V → {0, 1, 2} such that every vertex u for which f(u)=0 is adjacent to at least one vertex v for which f(v)=2. An RDF f is calledan outer independent Roman dominating function (OIRDF) if the set ofvertices assigned a 0 under f is an independent set. The weight of anOIRDF is the sum of its function values over ...
[ 7 ] - On the outer independent 2-rainbow domination number of Cartesian products of paths and cycles
Let G be a graph. A 2-rainbow dominating function (or 2-RDF) of G is a function f from V(G) to the set of all subsets of the set {1,2} such that for a vertex v ∈ V (G) with f(v) = ∅, thecondition $bigcup_{uin N_{G}(v)}f(u)={1,2}$ is fulfilled, wher NG(v) is the open neighborhoodof v. The weight of 2-RDF f of G is the value$omega (f):=sum _{vin V(G)}|f(v)|$. The 2-rainbowd...
Co-Authors