Seyed Mohammad Sadegh Nabavi Sales

Department of Mathematics and Computer Sciences, Hakim Sabzevari University, P.O. Box 397, Sabzevar, Iran

[ 1 ] - A note on $lambda$-Aluthge transforms of operators

Let $A=U|A|$ be the polar decomposition of an operator $A$ on a Hilbert space $mathscr{H}$ and $lambdain(0,1)$. The $lambda$-Aluthge transform of $A$ is defined by $tilde{A}_lambda:=|A|^lambda U|A|^{1-lambda}$. In this paper we show that emph{i}) when $mathscr{N}(|A|)=0$, $A$ is self-adjoint if and only if so is $tilde{A}_lambda$ for some $lambdaneq{1over2}$. Also $A$ is self adjoint if and onl...

[ 2 ] - On Approximate Birkhoff-James Orthogonality and Approximate $ast$-orthogonality in $C^ast$-algebras

We offer a new definition of $varepsilon$-orthogonality in normed spaces, and we try to explain some properties of which. Also we introduce some types of $varepsilon$-orthogonality in an arbitrary  $C^ast$-algebra $mathcal{A}$, as a Hilbert $C^ast$-module over itself, and investigate some of its properties in such spaces. We state some results relating range-kernel orthogonality in $C^*$-algebras.

[ 3 ] - On the Hyponormal Property of Operators

Let $T$ be a bounded linear operator on a Hilbert space $mathscr{H}$. We say that $T$ has the hyponormal property if there exists a function $f$, continuous on an appropriate set so that $f(|T|)geq f(|T^ast|)$. We investigate the properties of such operators considering certain classes of functions on which our definition is constructed. For such a function $f$ we introduce the $f$-Aluthge tran...

Co-Authors