Bayaz Daraby
Department of Mathematics, University of Maragheh,Maragheh, Iran
[ 1 ] - Woven fusion frames in Hilbert spaces and some of their properties
Extending and improving the concepts: woven frame and fusion frames, we introduce the notion of woven fusion frames in Hilbert spaces. We clarify our extension and generalization by some examples of woven frames and woven fusion frames. Also, we present some properties of woven fusion frames, especially we show that for given two woven frames of sequences, one can build woven fusion frames and ...
[ 2 ] - Results of the Chebyshev type inequality for Pseudo-integral
In this paper, some results of the Chebyshev type integral inequality for the pseudo-integral are proven. The obtained results, are related to the measure of a level set of the maximum and the sum of two non-negative integrable functions. Finally, we applied our results to the case of comonotone functions.
[ 3 ] - Some properties of fuzzy real numbers
In the mathematical analysis, there are some theorems and definitions that established for both real and fuzzy numbers. In this study, we try to prove Bernoulli's inequality in fuzzy real numbers with some of its applications. Also, we prove two other theorems in fuzzy real numbers which are proved before, for real numbers.
[ 4 ] - General Minkowski type and related inequalities for seminormed fuzzy integrals
Minkowski type inequalities for the seminormed fuzzy integrals on abstract spaces are studied in a rather general form. Also related inequalities to Minkowski type inequality for the seminormed fuzzy integrals on abstract spaces are studied. Several examples are given to illustrate the validity of theorems. Some results on Chebyshev and Minkowski type inequalities are obtained.
[ 5 ] - A Version of Favard's Inequality for the Sugeno Integral
In this paper, we present a version of Favard's inequality for special case and then generalize it for the Sugeno integral in fuzzy measure space $(X,Sigma,mu)$, where $mu$ is the Lebesgue measure. We consider two cases, when our function is concave and when is convex. In addition for illustration of theorems, several examples are given.
Co-Authors