Vladimir Zakharov
Boreskov Institute of Catalysis SB RAS, Prospekt Akad. Lavrentieva 5, 630090, Novosibirsk, Russian Federation|Novosibirsk State University, Pirogova Str. 2, 630090, Novosibirsk, Russian Federation
[ 1 ] - Ziegler-Natta catalysts for propylene polymerization – Interaction of an external donor with the catalyst
The interaction of the external donor (propyltrimethoxysilane - PTMS) with titanium-magnesium catalysts (TMCs) containing dibutylphthalate (DBP) as internal donor, which were prepared in different ways, was studied by chemical analysis and infrared diffuse reflectance spectroscopy (DRIFTS). The chemical composition of the catalysts after their interaction with heptane solutions of PTMS, PTMS/Al...
[ 2 ] - Effect of the synthesis conditions of titanium-magnesium catalysts on the composition, structure and performance in propylene polymerization
Supported catalysts synthesized via the interaction of Mg(OEt)2 with TiCl4 in the presence or absence of an internal stereoregulating donor (di-n-butyl phthalate), with different solvents (chlorobenzene, n-undecane, n-heptane) at different titanation temperatures have been studied by a set of physicochemical methods. Data on the chemical composition, X-ray structure and pore structure of these ...
[ 3 ] - Kinetics of ethylene polymerization over titanium-magnesium catalysts: The reasons for the observed second order of polymerization rate with respect to ethylene
The data on the effect of ethylene concentration on polymerization rate for several modifications of modern highly active titanium–magnesium catalysts TiCl4/MgCl2 are presented. These catalysts differ in titanium content and conditions of support preparation, activities, and the shape of kinetic curves. It is found that the observed order of polymerization rate with respect to ethylene in the r...
[ 4 ] - Copolymerization of ethylene with α-olefins over highly active supported Ziegler-Natta catalyst with vanadium active component
The new highly active supported vanadium-magnesium catalyst (VMC) has been studied in α-olefin (1-butene, 1-hexene)/ ethylene copolymerization in the presence of hydrogen. Data on the effect of α-olefin/ethylene ratio in copolymerization on the content of branchings in copolymers, kinetic profile, copolymer yield, molecular weight and molecular weight distribution of copolymers have been obtain...