Payam Kheirkhahan
Department of Electrical Engineering, Garmsar Branch, Islamic Azad University, Garmsar, Iran
[ 1 ] - Robust Fractional-order Control of Flexible-Joint Electrically Driven Robots
This paper presents a novel robust fractional PIλ controller design for flexible joint electrically driven robots. Because of using voltage control strategy, the proposed approach is free of problems arising from torque control strategy in the design and implementation. In fact, the motor's current includes the effects of nonlinearities and coupling in the robot manipulator. Therefore, cancella...
[ 2 ] - Robust Control of Electrically Driven Robots in the Task Space
In this paper, a task-space controller for electrically driven robot manipulators is developed using a robust control algorithm. The controller is designed using voltage control strategy. Based on the nominal model of the robotic arm, the desired signals for motor currents are calculated and then the voltage control law is proposed based on the current errors and motor nominal electrical model....
[ 3 ] - Robust Anti-Windup Control Design for PID Controllers–Theory and Experimental Verification
This paper addresses an approximation-based anti-windup (AW) control strategy for suppressing the windup effect caused by actuator saturation nonlinearity in proportional–integral–derivative (PID) controlled systems. The effect of actuator constraint is firstly regarded as a disturbance imported to the PID controller. The external disturbance can then be modeled by a linear differential equatio...
[ 4 ] - An Alternative Stability Proof for Direct Adaptive Function Approximation Techniques Based Control of Robot Manipulators
This short note points out an improvement on the robust stability analysis for electrically driven robots given in the paper. In the paper, the author presents a FAT-based direct adaptive control scheme for electrically driven robots in presence of nonlinearities associated with actuator input constraints. However, he offers not suitable stability analysis for the closed-loop system. In other w...
[ 5 ] - An Alternative Stability Proof for Direct Adaptive Function Approximation Techniques Based Control of Robot Manipulators
This short note points out an improvement on the robust stability analysis for electrically driven robots given in the paper. In the paper, the author presents a FAT-based direct adaptive control scheme for electrically driven robots in presence of nonlinearities associated with actuator input constraints. However, he offers not suitable stability analysis for the closed-loop system. In other w...
[ 6 ] - Robust Fractional-order Control of Flexible-Joint Electrically Driven Robots
This paper presents a novel robust fractional PIλ controller design for flexible joint electrically driven robots. Because of using voltage control strategy, the proposed approach is free of problems arising from torque control strategy in the design and implementation. In fact, the motor's current includes the effects of nonlinearities and coupling in the robot manipulator. Therefore, cancella...
[ 7 ] - Robust Control of Electrically Driven Robots in the Task Space
In this paper, a task-space controller for electrically driven robot manipulators is developed using a robust control algorithm. The controller is designed using voltage control strategy. Based on the nominal model of the robotic arm, the desired signals for motor currents are calculated and then the voltage control law is proposed based on the current errors and motor nominal electrical model....
[ 8 ] - Robust Anti-Windup Control Design for PID Controllers–Theory and Experimental Verification
This paper addresses an approximation-based anti-windup (AW) control strategy for suppressing the windup effect caused by actuator saturation nonlinearity in proportional–integral–derivative (PID) controlled systems. The effect of actuator constraint is firstly regarded as a disturbance imported to the PID controller. The external disturbance can then be modeled by a linear differential equatio...
Co-Authors