M. Polkouei

Faculty of Mathematical Sciences, University of Guilan, P.O.Box 41335-19141, Rasht, Iran

[ 1 ] - Probability of having $n^{th}$-roots and n-centrality of two classes of groups

In this paper, we consider the finitely 2-generated groups $K(s,l)$ and $G_m$ as follows:$$K(s,l)=langle a,b|ab^s=b^la, ba^s=a^lbrangle,\G_m=langle a,b|a^m=b^m=1, {[a,b]}^a=[a,b], {[a,b]}^b=[a,b]rangle$$ and find the explicit formulas for the probability of having nth-roots for them. Also, we investigate integers n for which, these groups are n-central.

[ 2 ] - nth-roots and n-centrality of finite 2-generator p-groups of nilpotency class 2

Here we consider all finite non-abelian 2-generator $p$-groups ($p$ an odd prime) of nilpotency class two and study the probability of having $n^{th}$-roots of them. Also we find integers $n$ for which, these groups are $n$-central.

[ 3 ] - Some numerical results on two classes of finite groups

In this paper, we consider the finitely presented groups $G_{m}$ and $K(s,l)$ as follows;$$G_{m}=langle a,b| a^m=b^m=1,~[a,b]^a=[a,b],~[a,b]^b=[a,b]rangle $$$$K(s,l)=langle a,b|ab^s=b^la,~ba^s=a^lbrangle;$$and find the $n^{th}$-commutativity degree for each of them. Also we study the concept of $n$-abelianity on these groups, where $m,n,s$ and $l$ are positive integers, $m,ngeq 2$ and $g.c.d(s,...

Co-Authors

M. Hashemi 3