A. Nazari
Department of Mathematics, Arak University, P.O. Box 38156-8-8349, Arak, Iran
[ 1 ] - Computational aspect to the nearest southeast submatrix that makes multiple a prescribed eigenvalue
Given four complex matrices $A$, $B$, $C$ and $D$ where $Ainmathbb{C}^{ntimes n}$ and $Dinmathbb{C}^{mtimes m}$ and let the matrix $left(begin{array}{cc} A & B C & D end{array} right)$ be a normal matrix and assume that $lambda$ is a given complex number that is not eigenvalue of matrix $A$. We present a method to calculate the distance norm (with respect to 2-norm) from $D$ to ...
[ 2 ] - Steffensen method for solving nonlinear matrix equation $X+A^T X^{(-1)}A=Q$
In this article we study Steffensen method to solve nonlinear matrix equation $X+A^T X^{(-1)}A=Q$, when $A$ is a normal matrix. We establish some conditions that generate a sequence of positive denite matrices which converges to solution of this equation.
[ 3 ] - On the construction of symmetric nonnegative matrix with prescribed Ritz values
In this paper for a given prescribed Ritz values that satisfy in the some special conditions, we find a symmetric nonnegative matrix, such that the given set be its Ritz values.
[ 4 ] - On the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
[ 5 ] - On the solving matrix equations by using the spectral representation
The purpose of this paper is to solve two types of Lyapunov equations and quadratic matrix equations by using the spectral representation. We focus on solving Lyapunov equations $AX+XA^*=C$ and $AX+XA^{T}=-bb^{T}$ for $A, X in mathbb{C}^{n times n}$ and $b in mathbb{C} ^{n times s}$ with $s < n$, which $X$ is unknown matrix. Also, we suggest the new method for solving quadratic matri...
[ 6 ] - On the Remarkable Formula for Spectral Distance of Block Southeast Submatrix
This paper presents a remarkable formula for spectral distance of a given block normal matrix $G_{D_0} = begin{pmatrix} A & B \ C & D_0 end{pmatrix} $ to set of block normal matrix $G_{D}$ (as same as $G_{D_0}$ except block $D$ which is replaced by block $D_0$), in which $A in mathbb{C}^{ntimes n}$ is invertible, $ B in mathbb{C}^{ntimes m}, C in mathbb{C}^{mti...
Co-Authors