K. Ullah
Department of Mathematics, International Islamic University H-10, 44000- Islamabad, Pakistan
[ 1 ] - New three-step iteration process and fixed point approximation in Banach spaces
In this paper we propose a new iteration process, called the $K^{ast }$ iteration process, for approximation of fixed points. We show that our iteration process is faster than the existing well-known iteration processes using numerical examples. Stability of the $K^{ast}$ iteration process is also discussed. Finally we prove some weak and strong convergence theorems for Suzuki ge...
[ 2 ] - Numerical Reckoning Fixed Points in $CAT(0)$ Spaces
In this paper, first we use an example to show the efficiency of $M$ iteration process introduced by Ullah and Arshad [4] for approximating fixed points of Suzuki generalized nonexpansive mappings. Then by using $M$ iteration process, we prove some strong and $Delta -$convergence theorems for Suzuki generalized nonexpansive mappings in the setting of $CAT(0)$ Spaces. Our results are the extensi...
[ 3 ] - Approximation of endpoints for multi-valued mappings in metric spaces
In this paper, under some appropriate conditions, we prove some $Delta$ and strong convergence theorems of endpoints for multi-valued nonexpansive mappings using modified Agarwal-O'Regan-Sahu iterative process in the general setting of 2-uniformly convex hyperbolic spaces. Our results extend and unify some recent results of the current literature.
Co-Authors