Dara Moazzami
University of Tehran, College of Engineering, Department of Engineering Science
[ 1 ] - Vulnerability Measure of a Network - a Survey
In this paper we discuss about tenacity and its properties in stability calculation. We indicate relationships between tenacity and connectivity, tenacity and binding number, tenacity and toughness. We also give good lower and upper bounds for tenacity. Since we are primarily interested in the case where disruption of the graph is caused by the removal of a vertex or vertices (and the resulting...
[ 2 ] - Normalized Tenacity and Normalized Toughness of Graphs
In this paper, we introduce the novel parameters indicating Normalized Tenacity ($T_N$) and Normalized Toughness ($t_N$) by a modification on existing Tenacity and Toughness parameters. Using these new parameters enables the graphs with different orders be comparable with each other regarding their vulnerabilities. These parameters are reviewed and discussed for some special graphs as well.
[ 3 ] - Edge-tenacity in Networks
Numerous networks as, for example, road networks, electrical networks and communication networks can be modeled by a graph. Many attempts have been made to determine how well such a network is "connected" or stated differently how much effort is required to break down communication in the system between at least some nodes. Two well-known measures that indicate how "reliable" a graph is are the...
[ 4 ] - Tenacity and some related results
Conceptually graph vulnerability relates to the study of graphintactness when some of its elements are removed. The motivation forstudying vulnerability measures is derived from design and analysisof networks under hostile environment. Graph tenacity has been anactive area of research since the the concept was introduced in1992. The tenacity T(G) of a graph G is defined asbegin{center} $T(G)=di...
[ 5 ] - On the tenacity of cycle permutation graph
A special class of cubic graphs are the cycle permutation graphs. A cycle permutation graph Pn(α) is defined by taking two vertex-disjoint cycles on n vertices and adding a matching between the vertices of the two cycles.In this paper we determine a good upper bound for tenacity of cycle permutation graphs.
[ 6 ] - An Optimization Model for Epidemic Mitigation and Some Theoretical and Applied Generalizations
In this paper, we present a binary-linear optimization model to prevent the spread of an infectious disease in a community. The model is based on the remotion of some connections in a contact network in order to separate infected nodes from the others. By using this model we nd an exact optimal solution and determine not only the minimum number of deleted links but also their exact positions. T...
[ 7 ] - Towards a measure of vulnerability, tenacity of a Graph
If we think of the graph as modeling a network, the vulnerability measure the resistance of the network to disruption of operation after the failure of certain stations or communication links. Many graph theoretical parameters have been used to describe the vulnerability of communication networks, including connectivity, integrity, toughness, binding number and tenacity.In this paper we discuss...
[ 8 ] - Online Scheduling of Jobs for D-benevolent instances On Identical Machines
We consider online scheduling of jobs with specic release time on m identical machines. Each job has a weight and a size; the goal is maximizing total weight of completed jobs. At release time of a job it must immediately be scheduled on a machine or it will be rejected. It is also allowed during execution of a job to preempt it; however, it will be lost and only weight of completed jobs contri...
[ 9 ] - Heuristic and exact algorithms for Generalized Bin Covering Problem
In this paper, we study the Generalized Bin Covering problem. For this problem an exact algorithm is introduced which can nd optimal solution for small scale instances. To nd a solution near optimal for large scale instances, a heuristic algorithm has been proposed. By computational experiments, the eciency of the heuristic algorithm is assessed.
[ 10 ] - Randomized Algorithm For 3-Set Splitting Problem and it's Markovian Model
In this paper we restrict every set splitting problem to the special case in which every set has just three elements. This restricted version is also NP-complete. Then, we introduce a general conversion from any set splitting problem to 3-set splitting. Then we introduce a randomize algorithm, and we use Markov chain model for run time complexity analysis of this algorithm. In the last section ...
[ 11 ] - A Cellular Automaton Based Algorithm for Mobile Sensor Gathering
In this paper we proposed a Cellular Automaton based local algorithm to solve the autonomously sensor gathering problem in Mobile Wireless Sensor Networks (MWSN). In this problem initially the connected mobile sensors deployed in the network and goal is gather all sensors into one location. The sensors decide to move only based on their local information. Cellular Automaton (CA) as dynamical sy...
[ 12 ] - Toughness of the Networks with Maximum Connectivity
The stability of a communication network composed of processing nodes and communication links is of prime importance to network designers. As the network begins losing links or nodes, eventually there is a loss in its effectiveness. Thus, communication networks must be constructed to be as stable as possible, not only with respect to the initial disruption, but also with respect to the possible...
[ 13 ] - Tenacity and some other Parameters of Interval Graphs can be computed in polynomial time
In general, computation of graph vulnerability parameters is NP-complete. In past, some algorithms were introduced to prove that computation of toughness, scattering number, integrity and weighted integrity parameters of interval graphs are polynomial. In this paper, two different vulnerability parameters of graphs, tenacity and rupture degree are defined. In general, computing the tenacity o...
[ 14 ] - Tenacity and rupture degree parameters for trapezoid graphs
Reliability of networks is an important issue in the field of graph and network. Computation of network vulnerability parameters is NP-complete for popular network topologies such as tree, Mesh, Cube, etc.In this paper, we will show that the tenacity and rupture degree parameters for trapezoid graphs can be computed in polynomial time.
Co-Authors