A. A. Estaji
Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran. Email: [email protected] and [email protected]
[ 1 ] - ON MAXIMAL IDEALS OF R∞L
Let $L$ be a completely regular frame and $mathcal{R}L$ be the ring of real-valued continuous functions on $L$. We consider the set $$mathcal{R}_{infty}L = {varphi in mathcal{R} L : uparrow varphi( dfrac{-1}{n}, dfrac{1}{n}) mbox{ is a compact frame for any $n in mathbb{N}$}}.$$ Suppose that $C_{infty} (X)$ is the family of all functions $f in C(X)$ for which the set ${x in X: |f(x)|geq dfrac{1...
[ 2 ] - On socle and Property (A) of the f-ring $Frm(mathcal{P}(mathbb R), L)$
A topoframe, denoted by $L_{ tau}$, is a pair $(L, tau)$ consisting of a frame $L$ and a subframe $ tau $ all of whose elements are complementary elements in$L$. $f$-ring $mathcal{R}(L_{ tau})$ is equal to the set $${fin Frm(mathcal{P}(mathbb R), L): f(mathfrak{O}(mathbb R))subseteq tau} .$$ In this paper, for every complemented element $ain L$ with $a, a'...
[ 3 ] - Sums of Strongly z-Ideals and Prime Ideals in ${mathcal{R}} L$
It is well-known that the sum of two $z$-ideals in $C(X)$ is either $C(X)$ or a $z$-ideal. The main aim of this paper is to study the sum of strongly $z$-ideals in ${mathcal{R}} L$, the ring of real-valued continuous functions on a frame $L$. For every ideal $I$ in ${mathcal{R}} L$, we introduce the biggest strongly $z$-ideal included in $I$ and the smallest strongly $z$-ideal containing ...
Co-Authors