N. Dehgardi

Sirjan University of Technology

[ 1 ] - A N‎ote on Revised Szeged ‎Index of ‎Graph ‎Operations

Let $G$ be a finite and simple graph with edge set $E(G)$‎. ‎The revised Szeged index is defined as‎ ‎$Sz^{*}(G)=sum_{e=uvin E(G)}(n_u(e|G)+frac{n_{G}(e)}{2})(n_v(e|G)+frac{n_{G}(e)}{2}),$‎ ‎where $n_u(e|G)$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$ and‎ ‎$n_{G}(e)$ is the number of‎ ‎equidistant vertices of $e$ in $G$‎. ‎In this paper...

[ 2 ] - The second geometric-arithmetic index for trees and unicyclic graphs

Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...

[ 3 ] - Edge 2-rainbow domination number and annihilation number in trees

A edge 2-rainbow dominating function (E2RDF) of a graph G is a ‎function f from the edge set E(G) to the set of all subsets‎ ‎of the set {1,2} such that for any edge.......................

[ 4 ] - انرژی لاپلاسین در گراف ها

This article has no abstract.

Co-Authors