I. Gutman
Faculty of Science, University of Kragujevac, Kragujevac, Serbia
[ 1 ] - General Theory of Cycle-Dependence of Total pi-Electron Energy
The theoretical treatment of cycle-effects on total pi-electron energy, mainly elaborated by Nenad Trinajstic and his research group, is re-stated in a general and more formal manner. It enables to envisage several other possible ways of measuring the cycle-effects and points at further directions of research.
[ 2 ] - On common neighborhood graphs II
Let G be a simple graph with vertex set V (G). The common neighborhood graph or congraph of G, denoted by con(G), is a graph with vertex set V (G), in which two vertices are adjacent if and only if they have at least one common neighbor in G. We compute the congraphs of some composite graphs. Using these results, the congraphs of several special graphs are determined.
[ 3 ] - Borderenergetic graphs of order 12
A graph G of order n is said to be borderenergetic if its energy is equal to 2n-2 and if G differs from the complete graph Kn. The first such graph was discovered in 2001, but their systematic study started only in 2015. Until now, the number of borderenergetic graphs of order n was determined for n
[ 4 ] - Graphs with smallest forgotten index
The forgotten topological index of a molecular graph $G$ is defined as $F(G)=sum_{vin V(G)}d^{3}(v)$, where $d(u)$ denotes the degree of vertex $u$ in $G$. The first through the sixth smallest forgotten indices among all trees, the first through the third smallest forgotten indices among all connected graph with cyclomatic number $gamma=1,2$, the first through<br /...
[ 5 ] - Three-center Harary index and its applications
The Harary index H can be viewed as a molecular structure descriptor composed of increments representing interactions between pairs of atoms, such that their magnitude decreases with the increasing distance between the respective two atoms. A generalization of the Harary index, denoted by Hk, is achieved by employing the Steiner-type distance between k-tuples of atoms. We show that the linear c...
[ 6 ] - Edge-decomposition of topological indices
The topological indices, defined as the sum of contributions of all pairs of vertices (among which are the Wiener, Harary, hyper–Wiener indices, degree distance, and many others), are expressed in terms of contributions of edges and pairs of edges.
[ 7 ] - Open problems for equienergetic graphs
The energy of a graph is equal to the sum of the absolute values of its eigenvalues. Two graphs of the same order are said to be equienergetic if their energies are equal. We point out the following two open problems for equienergetic graphs. (1) Although it is known that there are numerous pairs of equienergetic, non-cospectral trees, it is not known how to systematically construct any such pa...
[ 8 ] - Altan derivatives of a graph
Altan derivatives of polycyclic conjugated hydrocarbons were recently introduced and studied in theoretical organic chemistry. We now provide a generalization of the altan concept, applicable to any graph. Several earlier noticed topological properties of altan derivatives of polycyclic conjugated hydrocarbons are shown to be the properties of all altan derivatives of all graphs. Among these ar...
[ 9 ] - Autobiography of IVAN GUTMAN
[ 10 ] - Leap Zagreb indices of trees and unicyclic graphs
By d(v|G) and d_2(v|G) are denoted the number of first and second neighborsof the vertex v of the graph G. The first, second, and third leap Zagreb indicesof G are defined asLM_1(G) = sum_{v in V(G)} d_2(v|G)^2, LM_2(G) = sum_{uv in E(G)} d_2(u|G) d_2(v|G),and LM_3(G) = sum_{v in V(G)} d(v|G) d_2(v|G), respectively. In this paper, we generalizethe results of Naji et al. [Commun. Combin. Optim. ...
[ 11 ] - On leap Zagreb indices of graphs
The first and second Zagreb indices of a graph are equal, respectively, to the sum of squares of the vertex degrees, and the sum of the products of the degrees of pairs of adjacent vertices. We now consider analogous graph invariants, based on the second degrees of vertices (number of their second neighbors), called leap Zagreb indices. A number of their basic properties is established.
[ 12 ] - Average Degree-Eccentricity Energy of Graphs
The concept of average degree-eccentricity matrix ADE(G) of a connected graph $G$ is introduced. Some coefficients of the characteristic polynomial of ADE(G) are obtained, as well as a bound for the eigenvalues of ADE(G). We also introduce the average degree-eccentricity graph energy and establish bounds for it.
[ 13 ] - Survey of Graph Energies
Let graph energy is a graph--spectrum--based quantity, introduced in the 1970s. After a latent period of 20--30 years, it became a popular topic of research both in mathematical chemistry and in ``pure'' spectral graph theory, resulting in over 600 published papers. Eventually, scores of different graph energies have been conceived. In this article we...
[ 14 ] - Seidel Signless Laplacian Energy of Graphs
Let $S(G)$ be the Seidel matrix of a graph $G$ of order $n$ and let $D_S(G)=diag(n-1-2d_1, n-1-2d_2,ldots, n-1-2d_n)$ be the diagonal matrix with $d_i$ denoting the degree of a vertex $v_i$ in $G$. The Seidel Laplacian matrix of $G$ is defined as $SL(G)=D_S(G)-S(G)$ and the Seidel signless Laplacian matrix as $SL^+(G)=D_S(G)+S(G)$. The Seidel signless Laplacian energy $E_{SL^+...
[ 15 ] - Laplacian Sum-Eccentricity Energy of a Graph
We introduce the Laplacian sum-eccentricity matrix LS_e} of a graph G, and its Laplacian sum-eccentricity energy LS_eE=sum_{i=1}^n |eta_i|, where eta_i=zeta_i-frac{2m}{n} and where zeta_1,zeta_2,ldots,zeta_n are the eigenvalues of LS_e}. Upper bounds for LS_eE are obtained. A graph is said to be twinenergetic if sum_{i=1}^n |eta_i|=sum_{i=1}^n |zeta_i|. Conditions ...
[ 16 ] - گرافهای هم انرژی
فرض کنید یک گراف ساده داده شده است. هر مقدار ویژه ماتریس مجاورت این گراف یک مقدار ویژه آن نامیده می شود. انرژی یک گراف عبارت است از مجموع قدرمطلق های مقادیر ویژه آن. دو گراف با انرژی یکسان گرافهای هم انرژی نامیده می شوند. این مقاله به توصیف تاریخی و شرحی از نتایج جدید در این زمینه می پردازد.
[ 17 ] - Mathematical Chemistry Works of Dragos Cvetkovic
In addition to his countless contributions to spectral graph theory, some works of Dragos Cvetkovic are concerned with chemical problems. These are briefly outlined, with emphasis on his collaboration with the present author.
[ 18 ] - Zagreb Indices and Coindices of Total Graph, Semi-Total Point Graph and Semi-Total Line Graph of Subdivision Graphs
Expressions for the Zagreb indices and coindices of the total graph, semi-total point graph and of semi-total line graph of subdivision graphs in terms of the parameters of the parent graph are obtained, thus generalizing earlier existing results.
Co-Authors
Pu We 1