Asgar Emamgholi
Neuroscience Research Center, Baqiyatallah University of Medical Science, Tehran, Iran|Microbial Biotechnology, Faculty of Science, Payame Noor University, Unit of Tehran Center, Tehran, Iran
[ 1 ] - Presentation of a novel model of chitosan- polyethylene oxide-nanohydroxyapatite nanofibers together with bone marrow stromal cells to repair and improve minor bone defects
Objective(s):Various methods for repairing bone defects are presented. Cell therapy is one of these methods. Bone marrow stromal cells (BMSCs) seem to be suitable for this purpose. On the other hand, lots of biomaterials are used to improve and repair the defect in the body, so in this study we tried to produce a similar structure to the bone by the chitosan and hydroxyapatite. Materials and Me...
[ 2 ] - New Chitosan/Poly(ethylene oxide)/Thyme Nanofiber Prepared by Electrospinning Method for Antimicrobial Wound Dressing
A new natural and environmental friendly wound dressing was introduced for the first time that was prepared by electrospinning method. This new wound dressing has chitosan base, and poly (ethylene oxide) was added as co-spinning agent to improve spinnability of chitosan. Moreover, thyme extract as a natural antibacterial additive was introduced in the as electrospun nanofibers scaffold in order...
[ 3 ] - Bone Marrow Stromal Cells Associated with Poly L-Lactic-Co-Glycolic Acid (PLGA) Nanofi ber Scaff old Improve Transected Sciatic Nerve Regeneration
Background: Although peripheral nerves show capacity for regeneration after injury to a certain extent, the extent of regeneration is not remarkable. Previous studies have suggested that through the production of growth factors or extracellular matrix components, mesenchymal stem cells may enhance nerve regeneration.Objectives: In the present study, the therapeutic potenc...
Co-Authors