Visual Observation of Flow Regime Transition in Downward Vertical Gas-Liquid Flow Using Simple Mixer
Authors
Abstract:
Different flow patterns of downward gas-liquid two-phaseflow using simple mixer are studied in an experimental manner. An experimental setup is designed and fabricated to allow the visual observation of downward two-phase flow patterns and their transitions. The flow patterns are recorded by a 1200 frames per second high speed video camera. The quality of downward two-phase flow patterns photos are improved through image processing. The setup includes a transparent vertical pipe of 50 mm diameter and the (L/d) aspect ratio of 80. Flow patterns are obtained through 374 test cases during which air and water superficial velocities changed. In order to assess the performance of the mixer, all expected flow patterns are obtained. The four observed flow regimes are: of falling film, bubbly, slug and froth. The flow map is plotted and transitions among different flow patterns are compared with previous finding in specified conditions indicating a good agreement was observed.
similar resources
experimental investigation of power consumption, mass transfer coefficient and flow regime in gas-liquid dispersion systems
full text
A Study of Flow and Mixing in Bubbly Gas-Liquid Pipe Flow Generated by a Grid
The spreading of a tracer in a bubbly two-phase grid-generated turbulent flow system is studied. In this work both particle image velocimetry (PIV) and planer laser-induced <span style="font-size: 10pt...
full textA method for bubble volume measurement under constant flow conditions in gas–liquid two-phase flow
Measuring the volume of a bubble, especially at its detachment, is a basic subject in gas-liquid two-phase flow research. A new indirect method for this measurement under constant flow conditions is presented. An electronic device is designed and constructed based on laser beam intensity. This device calculates the frequency of the bubble formation by measuring the total time of the formation p...
full textFlow Pattern Identification and Pressure Drop Calculation for Gas-Liquid Flow in a Horizontal Pipeline
Two phase gas-liquid flow pattern in a horizontal pipeline is predicted very accurately using a newly-developed analytical relation. The pattern identification is based on one of the most widely used graphs, the Baker diagram, modified in a way that compensates for the unrealistic oversimplifications of recent works. The Kern's method of pressure drop calculation is used to obtain the frict...
full textSimulation of gas-liquid two phase flow in upriser pipe of gas-lift systems
Gas-lift pumps are devices for lifting liquid phase incorporating the gas phase to be injected in the bottom of liquid column. They are widely used in various industrial applications such as oil extracting in petroleum industries. Gas-liquid flow being the main part of the flow through these systems, flowing in vertical pipes of gas-lift pumps has different regimes namely bubbly, slug, chur...
full textControl of Nozzle Flow Using Microjets at Supersonic Mach Regime
This article reports the active control of base flows using the experimental procedure. Active control of base pressure helps in reducing the base drag in aerodynamic devices having suddenly expanded flows. Active control in the form of microjets having 0.5 mm radius placed at forty-five degrees apart is employed to control the base pressure. The Mach numbers of the present analysis are 1.7, 2....
full textMy Resources
Journal title
volume 4 issue 1
pages 53- 62
publication date 2016-01-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023