Vibration Characteristics of Functionally Graded Micro-Beam Carrying an Attached Mass

Authors

  • Alireza Babaei Department of Mechanical Engineering, University of Kentucky, Lexington, KY, 40506, USA
  • Arash Rahmani Faculty of Mechanical Engineering, Urmia University of Technology, Urmia, Iran
  • Shirko Faroughi Faculty of Mechanical Engineering, Urmia University of Technology, Urmia, Iran
Abstract:

In this article, in reference to the modified couple stress theory and Euler-Bernoulli beam theory, the free lateral vibration response of a micro-beam carrying a moveable attached mass is investigated. This is a decent model for biological and biomedical applications beneficial to the early-stage diagnosis of diseases and malfunctions of human body organs and enzymes. The micro-cantilever beam is composed of functionally graded materials (FGMs). The material properties are supposed to show variations through-thickness of the beam in consonance to the power of law. Rayleigh-Ritz method is applied in order to explore the natural frequencies of the first three vibration modes. In order to manifest the accuracy of the proposed method, the results are established and juxtaposed with technical literature. Influences of the material length-scale parameter that captures the size-dependency, ratio of the mass of the beam to the mass of the attached mass and power index of the graded material consequent to the vibrational behavior of the system are contemplated. This technical research denotes the value of the material gradation besides to the inertia of an attached mass in the dynamic behavior of the bio-micro-systems. As a result, the adoption of suitable power index, mass ratio and position of the attached mass lead to the superior design of bio-micro-systems persuading early-stage diagnostics.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A Nonlocal First Order Shear Deformation Theory for Vibration Analysis of Size Dependent Functionally Graded Nano beam with Attached Tip Mass: an Exact Solution

In this article, transverse vibration of a cantilever nano- beam with functionally graded materials and carrying a concentrated mass at the free end is studied. Material properties of FG beam are supposed to vary through thickness direction of the constituents according to power-law distribution (P-FGM). The small scale effect is taken into consideration based on nonlocal elasticity theory of E...

full text

Vibration and Buckling Analysis of Functionally Graded Flexoelectric Smart Beam

In this paper, the buckling and vibration behaviour of functionally graded flexoelectric nanobeam is examined. The vibration and buckling formulations of functionally graded nanobeam are developed by using a new theory that’s presented exclusively for flexoelecteric nano-materials. So by considering Von-Karman strain and forming enthalpy equation based on displacement, polarization and electric...

full text

Disk Vibration Analysis of Functionally Graded Materials

Perforated discs have many applications in different parts of industry. By making such disks of functionally graded materials, more capabilities can be obtained from them. Vibration analysis of these kinds of disks can help us make them more efficient. In this paper, modeling and evaluation of disk vibration of functionally graded materials with regard to thickness were carried out using Abaqus...

full text

Nonlinear Vibration Analysis of the Beam Carrying a Moving Mass Using Modified Homotopy

In the present study, the analysis of nonlinear vibration for a simply-supported flexible beam with a constant velocity carrying a moving mass is studied. The amplitude of vibration assumed high and its deformation rate is assumed slow. Due to the high amplitude of vibrations, stretching is created in mid-plane, resulting in, the nonlinear strain-displacement relations is obtained, Thus, Nonlin...

full text

Effect of Temperature Changes on Dynamic Pull-in Phenomenon in a Functionally Graded Capacitive Micro-beam

In this paper, dynamic behavior of a functionally graded cantilever micro-beam and its pull-in instability, subjected to simultaneous effects of a thermal moment and nonlinear electrostatic pressure, has been studied. It has been assumed that the top surface is made of pure metal and the bottom surface from a metal–ceramic mixture. The ceramic constituent percent of the bottom surface ranges fr...

full text

Bending, Buckling and Vibration of a Functionally Graded Porous Beam Using Finite Elements

This study presents the effect of porosity on mechanical behaviors of a power distribution functionally graded beam. The Euler-Bernoulli beam is assumed to describe the kinematic relations and constitutive equations. Because of technical problems, particle size shapes and micro-voids are created during the fabrication which should be taken into consideration. Two porosity models are proposed. T...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 1

pages  49- 58

publication date 2020-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023