VHR Semantic Labeling by Random Forest Classification and Fusion of Spectral and Spatial Features on Google Earth Engine

Authors

  • M. Kakooei Electrical & Computer Engineering Department, Babol Noshirvani University of Technology, Babol, Iran
  • Y. Baleghi Electrical & Computer Engineering Department, Babol Noshirvani University of Technology, Babol, Iran
Abstract:

Semantic labeling is an active field in remote sensing applications. Although handling high detailed objects in Very High Resolution (VHR) optical image and VHR Digital Surface Model (DSM) is a challenging task, it can improve the accuracy of semantic labeling methods. In this paper, a semantic labeling method is proposed by fusion of optical and normalized DSM data. Spectral and spatial features are fused into a Heterogeneous Feature Map to train the classifier. Evaluation database classes are impervious surface, building, low vegetation, tree, car, and background. The proposed method is implemented on Google Earth Engine. The method consists of several levels. First, Principal Component Analysis is applied to vegetation indexes to find maximum separable color space between vegetation and non-vegetation area. Gray Level Co-occurrence Matrix is computed to provide texture information as spatial features. Several Random Forests are trained with automatically selected train dataset. Several spatial operators follow the classification to refine the result. Leaf-Less-Tree feature is used to solve the underestimation problem in tree detection. Area, major and, minor axis of connected components are used to refine building and car detection. Evaluation shows significant improvement in tree, building, and car accuracy. Overall accuracy and Kappa coefficient are appropriate.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Hyperspectral Images Classification by Combination of Spatial Features Based on Local Surface Fitting and Spectral Features

Hyperspectral sensors are important tools in monitoring the phenomena of the Earth due to the acquisition of a large number of spectral bands. Hyperspectral image classification is one of the most important fields of hyperspectral data processing, and so far there have been many attempts to increase its accuracy. Spatial features are important due to their ability to increase classification acc...

full text

Spectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms

Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...

full text

the role of semantic and communicative translation on reading comprehension of scientific texts

the following null hypothesis was proposed: h : there is no significant difference between the use of semantically or communicatively translates scientific texts. to test the null hypothesis, a number of procedures were taken first, two passages were selected form soyrcebooks of food and nutrition industry and gardening deciplines. each, in turn, was following by a number of comprehension quest...

15 صفحه اول

on the comparison of keyword and semantic-context methods of learning new vocabulary meaning

the rationale behind the present study is that particular learning strategies produce more effective results when applied together. the present study tried to investigate the efficiency of the semantic-context strategy alone with a technique called, keyword method. to clarify the point, the current study seeked to find answer to the following question: are the keyword and semantic-context metho...

15 صفحه اول

the effects of speech rate,prosodic features, and blurred speech on iranian efl learners listening comprehension

کلید واژه ها به زبان انگلیسی: effect of speech rate on listening comprehension, blurred speech,segmental and suprasegmental features,authentic speech,intelligibility, discrimination, omission, assimilation چکیده: سرعت مطالب شنیداری در کلام پیوسته بطور کلی همواره کابوسی بوده برای یادگیرنده های زبان دوم و بالاخص برای شنوندگان ایرانی. علی رغم عقل سلیم که کلام با سرعت کندتری فعالیتهای درک مطلب شن...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 3

pages  357- 370

publication date 2020-07-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023