The Use of Fundamental Color Stimulus to Improve the Performance of Artificial Neural Network Color Match Prediction Systems
Authors
Abstract:
In the present investigation attempts were made for the first time to use the fundamental color stimulus as the input for a fixed optimized neural network match prediction system. Four sets of data having different origins (i.e. different substrate, different colorant sets and different dyeing procedures) were used to train and test the performance of the network. The results showed that the use of fundamental color stimulus greatly reduces the errors as depicted by the MSE and D Cave data and improves the performance of the neural network prediction system. Additionally the use of fundamental color stimulus makes provisions for predicting the concentrations of one data set whilst being trained by a second data set of completely different origin.
similar resources
the use of fundamental color stimulus to improve the performance of artificial neural network color match prediction systems
in the present investigation attempts were made for the first time to use the fundamental color stimulus as the input for a fixed optimized neural network match prediction system. four sets of data having different origins (i.e. different substrate, different colorant sets and different dyeing procedures) were used to train and test the performance of the network. the results showed that the us...
full textthe use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach
abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...
15 صفحه اولassessment of the efficiency of s.p.g.c refineries using network dea
data envelopment analysis (dea) is a powerful tool for measuring relative efficiency of organizational units referred to as decision making units (dmus). in most cases dmus have network structures with internal linking activities. traditional dea models, however, consider dmus as black boxes with no regard to their linking activities and therefore do not provide decision makers with the reasons...
analysis of power in the network society
اندیشمندان و صاحب نظران علوم اجتماعی بر این باورند که مرحله تازه ای در تاریخ جوامع بشری اغاز شده است. ویژگیهای این جامعه نو را می توان پدیده هایی از جمله اقتصاد اطلاعاتی جهانی ، هندسه متغیر شبکه ای، فرهنگ مجاز واقعی ، توسعه حیرت انگیز فناوری های دیجیتال، خدمات پیوسته و نیز فشردگی زمان و مکان برشمرد. از سوی دیگر قدرت به عنوان موضوع اصلی علم سیاست جایگاه مهمی در روابط انسانی دارد، قدرت و بازتولید...
15 صفحه اولCurl Size and Pelt Color Determination of Zandi Lambs Using Image Processing and Artificial Neural Network
In this study, a method based on using image processing and artificial neural network is introduced to determine pelt color and curl size of newborn lambs in Zandi sheep. The data was collected from 300 newborn lambs reared in the Zandi sheep breeding centre of Khojir, Tehran. Primarily, curl size and pelt color of new born lambs was recorded by experienced appraisers, and at the same time, sev...
full textsurveying the relevance of proportions to the content of quran verses
چکیده : قرآن چشمه سار زلال هدایتی است که از سوی خداوند حکیم نازل شده تا بشر را به سر منزل کمال برساند. و در این راستا از شیوه های گوناگون بیانی خطابی و بلاغی استفاده کرده تا با فطرت زیبا طلب انسان درآمیزد و اورا مقهور خویش ساخته، به سوی کمالات سوق دهد.ازجمله جنبه های بارز اعجاز بیانی قرآن وجود فواصل در پایان آیات است که کار برد سجع و قافیه در کلام بشر شبیه آن است. برخی ازعلمای سلف تفاوت هایی ب...
15 صفحه اولMy Resources
Journal title
volume 24 issue 4
pages 53- 61
publication date 2005-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023