The small intersection graph relative to multiplication modules
Authors
Abstract:
Let $R$ be a commutative ring and let $M$ be an $R$-module. We define the small intersection graph $G(M)$ of $M$ with all non-small proper submodules of $M$ as vertices and two distinct vertices $N, K$ are adjacent if and only if $Ncap K$ is a non-small submodule of $M$. In this article, we investigate the interplay between the graph-theoretic properties of $G(M)$ and algebraic properties of $M$, where $M$ is a multiplication module.
similar resources
the small intersection graph relative to multiplication modules
let $r$ be a commutative ring and let $m$ be an $r$-module. we define the small intersection graph $g(m)$ of $m$ with all non-small proper submodules of $m$ as vertices and two distinct vertices $n, k$ are adjacent if and only if $ncap k$ is a non-small submodule of $m$. in this article, we investigate the interplay between the graph-theoretic properties of $g(m)$ and algebraic properties of $m...
full textF-regularity relative to modules
In this paper we will generalize some of known results on the tight closure of an ideal to the tight closure of an ideal relative to a module .
full textModules with copure intersection property
In this paper, we investigate the modules with the copure intersection property and obtained obtain some related results.
full textON COMULTIPLICATION AND R-MULTIPLICATION MODULES
We state several conditions under which comultiplication and weak comultiplication modulesare cyclic and study strong comultiplication modules and comultiplication rings. In particular,we will show that every faithful weak comultiplication module having a maximal submoduleover a reduced ring with a finite indecomposable decomposition is cyclic. Also we show that if M is an strong comultiplicati...
full textA characterization of finitely generated multiplication modules
Let $R$ be a commutative ring with identity and $M$ be a finitely generated unital $R$-module. In this paper, first we give necessary and sufficient conditions that a finitely generated module to be a multiplication module. Moreover, we investigate some conditions which imply that the module $M$ is the direct sum of some cyclic modules and free modules. Then some properties of Fitting ideals o...
full textMULTIPLICATION MODULES THAT ARE FINITELY GENERATED
Let $R$ be a commutative ring with identity and $M$ be a unitary $R$-module. An $R$-module $M$ is called a multiplication module if for every submodule $N$ of $M$ there exists an ideal $I$ of $R$ such that $N = IM$. It is shown that over a Noetherian domain $R$ with dim$(R)leq 1$, multiplication modules are precisely cyclic or isomorphic to an invertible ideal of $R$. Moreover, we give a charac...
full textMy Resources
Journal title
volume 4 issue 1
pages 21- 32
publication date 2016-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023