The Economic Evaluation of Optimal Water Allocation Using Artificial Neural Network (Case Study: Moghan Plain)
Authors
Abstract:
recipitation shortage and the consequent loss of several water resources, as well as the population growth, are the most important problems in arid and semi-arid regions like Iran. The providence of basic tools for optimal water resources management is considered as one of the main solutions to this problem. Since the agricultural sector is the main user of water resources, the present study presented a model based on an artificial neural network method for optimal allocation of water resources in the agricultural sector during the statistical period of 2007-2016. The objective function was determined for each product in the agricultural sector as well as product performance, each product revenues, and cultivated area of the demand function. Maximization of the objective function (to maximize economic profits) and optimal allocation of water resources were; then, conducted by using the neural network. The results of the application of the artificial neural network method to the problem of optimal water allocation showed that, in this section, higher revenues could be obtained through economic policies as well as changing the pattern of cultivation. Furthermore, the results revealed that about 44 percent of the optimal allocation revenues of water resources ($115 billion) were improved between the agricultural sectors, compared to the current situation, by applying a coefficient of 0.9 compared to two coefficients of 0.75.
similar resources
scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Groundwater quality assessment using artificial neural network: A case study of Bahabad plain, Yazd, Iran
Groundwater quality management is the most important issue in many arid and semi-arid countries, including Iran.Artificial neural network (ANN) has an extensive range of applications in water resources management. In this study,artificial neural network was developed using MATLAB R2013 software package, and Cl, EC, SO4 and NO3 qualitativeparameters were estimated and compared with the measured ...
full textStream Flow Prediction in Flood Plain by Using Artificial Neural Network (Case Study: Sepidroud Watershed)
In order to determine hydrological behavior and water management of Sepidroud River (North of Iran-Guilan) the present study has focused on stream flow prediction by using artificial neural network. Ten years observed inflow data (2000-2009) of Sepidroud River were selected; then these data have been forecasted by using neural network. Finally, predicted results are compared to the observed dat...
full textformation and evolution of regional organizations: the case study of the economic cooperation organization (eco)
abstract because of the many geopolitical, geo economical and geo strategically potentials and communicational capabilities of eco region, members can expand the convergence and the integration in base of this organization that have important impact on members development and expanding peace in international and regional level. based on quality analyzing of library findings and experts interv...
15 صفحه اولan investigation about the relationship between insurance lines and economic growth; the case study of iran
مطالعات قبلی بازار بیمه را به صورت کلی در نظر می گرفتند اما در این مطالعه صنعت بیمه به عنوان متغیر مستفل به بیمه های زندگی و غیر زندگی شکسته شده و هم چنین بیمه های زندگی به رشته های مختلف بیمه ای که در بازار بیمه ایران سهم قابل توجهی دارند تقسیم میشود. با استفاده از روشهای اقتصاد سنجی داده های برای دوره های 48-89 از مراکز ملی داده جمع آوری شد سپس با تخمین مدل خود بازگشتی برداری همراه با تعدادی ...
15 صفحه اولGroundwater level simulation using artificial neural network: a case study from Aghili plain, urban area of Gotvand, south-west Iran
In this paper, the Artificial Neural Network (ANN) approach is applied for forecasting groundwater level fluctuation in Aghili plain,southwest Iran. An optimal design is completed for the two hidden layers with four different algorithms: gradient descent withmomentum (GDM), levenberg marquardt (LM), resilient back propagation (RP), and scaled conjugate gradient (SCG). Rain,evaporation, relative...
full textMy Resources
Journal title
volume 24 issue 3
pages 833- 851
publication date 2020-09-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023